Dictionary Learning in Stereo Imaging
نویسندگان
چکیده
This paper presents a new method for learning overcomplete dictionaries adapted to efficient joint representation of stereo images. We first formulate a sparse stereo image model where the multi-view correlation is described by local geometric transforms of dictionary atoms in two stereo views. A maximum-likelihood method for learning stereo dictionaries is then proposed, which includes a multi-view geometry constraint in the probabilistic modeling in order to obtain dictionaries optimized for the joint representation of stereo images. The dictionaries are learned by optimizing the maximum-likelihood objective function using the expectation-maximization algorithm. We illustrate the learning algorithm in the case of omnidirectional images, where we learn scales of atoms in a parametric dictionary. The resulting dictionaries provide both better performance in the joint representation of stereo omnidirectional images and improved multi-view feature matching. We finally discuss and demonstrate the benefits of dictionary learning for distributed scene representation and camera pose estimation. Index Terms Sparse approximations, dictionary learning, multi-view imaging, omnidirectional cameras.
منابع مشابه
Robust Photometric Stereo via Dictionary Learning
Photometric stereo is a method that seeks to reconstruct the normal vectors of an object from a set of images of the object illuminated under different light sources. While effective in some situations, classical photometric stereo relies on a diffuses surface model that cannot handle objects with complex reflectance patterns, and it is sensitive to non-idealities in the images. In this work, w...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملDistributed multi-view image coding with learned dictionaries
This paper addresses the problem of distributed image coding in camera neworks. The correlation between multiple images of a scene captured from different viewpoints can be effiiciently modeled by local geometric transforms of prominent images features. Such features can be efficiently represented by sparse approximation algorithms using geometric dictionaries of various waveforms, called atoms...
متن کامل